Bayesian Nonparametrics II

Indian Buffet Process

Sarah M Brown

Electrical and Computer Engineering
Northeastern University
Summary

- Reviewed Gaussian Mixture Modeling
- GEM distribution is an infinite extension of the Dirichlet
- DPMM is a generative process using the GEM on cluster priors
- Stick-Breaking is a representation of the GEM or Dirichlet prior
- (multivariate) Poyla Urn is a representation of categorical marginals with Beta (or Dirichlet) prior
- Hoppe-Urn is a finite representation of the marginal with GEM prior
- CRP is a finite representation of the marginal with GEM prior
Motivating Example

Many images each with some subset of 4 objects
From Clustering to Latent Feature Allocation

- Write cluster assignments as a binary matrix:
 \(Z_{i,k} = 1 \) if sample \(i \) belongs to cluster \(k \)
From Clustering to Latent Feature Allocation

- Write cluster assignments as a binary matrix:
 \(Z_{i,k} = 1 \) if sample \(i \) belongs to cluster \(k \)

- What if samples could belong to multiple latent groups?
Finite Latent Feature Allocation

\[\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \quad (1) \]

\[z_{i,k} | \pi_k \sim \text{Ber}(\pi_k) \quad (2) \]
Finite Latent Feature Allocation

\[\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \]
(1)

\[z_{i,k} | \pi_k \sim \text{Ber} (\pi_k) \]
(2)
Finite Latent Feature Allocation

\(\pi_k \mid \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \) \hspace{1cm} (1)

\(z_{i,k} \mid \pi_k \sim \text{Ber} \left(\pi_k \right) \) \hspace{1cm} (2)

\(K = 10, N = 20, \alpha = 8 \)
Marginal on Z
for finite K

Model:

\[\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \]
\[z_{i,k} | \pi_k \sim \text{Ber} (\pi_k) \]
Marginal on Z

for finite K

Model:

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right)$$

Recall:

$$\text{B}(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}$$

$$\Gamma(m) = (m - 1)! m \in \mathbb{Z}$$

$$\Gamma(x) = x\Gamma(x - 1) x > 0$$
Marginal on Z
for finite K

Model:

\[
\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \]
\[
z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right)
\]

Recall:

\[
B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}
\]
\[
\Gamma(m) = (m - 1)! m \in \mathbb{Z}
\]
\[
\Gamma(x) = x\Gamma(x - 1) x > 0
\]

So:

\[
P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} p(z_{i,k} | \pi_k) \right) p(\pi_k) d\pi_k
\]
\[
= \prod_{k=1}^{K} \frac{B(n_k + \frac{\alpha}{K}, N - n_k + 1)}{B(\frac{\alpha}{K}, 1)}
\]
\[
= \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
\]

Follows from Beta-Binomial Conjugacy Exchangeable, depends only on $n_k = \sum_{i=1}^{N} z_{i,k}$
Marginal on Z
for finite K

Model:

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right)$$

Recall:

$$\text{B}(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}$$

$$\Gamma(m) = (m - 1)! m \in \mathbb{Z}$$

$$\Gamma(x) = x\Gamma(x - 1)x > 0$$

So:

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} p(z_{i,k} | \pi_k) \right) p(\pi_k) d\pi_k$$

$$= \prod_{k=1}^{K} \frac{\text{B}(n_k + \frac{\alpha}{K}, N - n_k + 1)}{\text{B}(\frac{\alpha}{K}, 1)}$$

$$= \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K})\Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

▶ Follows from Beta-Binomial Conjugacy
Marginal on Z

for finite K

Model:

\[
\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \]

\[
z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right) \]

Recall:

\[
\text{B}(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)}
\]

\[
\Gamma(m) = (m - 1)! \quad m \in \mathbb{Z}
\]

\[
\Gamma(x) = x \Gamma(x - 1) \quad x > 0
\]

So:

\[
P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} p(z_{i,k} | \pi_k) \right) p(\pi_k) d\pi_k
\]

\[
= \prod_{k=1}^{K} \frac{\text{B}(n_k + \frac{\alpha}{K}, N - n_k + 1)}{\text{B}(\frac{\alpha}{K}, 1)}
\]

\[
= \prod_{k=1}^{K} \frac{\Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
\]

Follows from Beta-Binomial Conjugacy

Exchangeable, depends only on

\[
n_k = \sum_{i=1}^{N} z_{i,k}
\]
Left Ordered Form

Sample
Left Ordered Form

Sample

column sort by sum
Left Ordered Form

Sample

column sort by sumlof
Left Ordered Form

Properties:

- many to one mapping
Left Ordered Form

Properties:

- many to one mapping
- every Z has a unique lof
Properties:

- many to one mapping
- every Z has a unique lof
- Can define an equivalence X and Y are lof equivalent if $\text{lof}(X) = \text{lof}(Y)$
Left Ordered Form

Properties:

- many to one mapping
- every Z has a unique lof
- Can define an equivalence X and Y are lof equivalent if $\text{lof}(X) = \text{lof}(Y)$
- Uses history: feature k at sample i is $(z_{1,k}, \ldots, z_{(i-1),k})$
- K_h is the number of features with history h
Left Ordered Form

Properties:

- many to one mapping
- every \(Z \) has a unique \(\text{lof} \)
- Can define an equivalence \(X \) and \(Y \) are \(\text{lof} \) equivalent if \(\text{lof}(X) = \text{lof}(Y) \)
- Uses history: feature \(k \) at sample \(i \) is \((z_{1,k}, \ldots, z_{(i-1),k})\)
- \(K_h \) is the number of features with history \(h \)

New marginal:

\[
P([Z]) = \sum_{Z \in [Z]} P(Z)
= \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha K}{K} \frac{\Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
\]
Left Ordered Form

Properties:
- many to one mapping
- every Z has a unique lof
- Can define an equivalence X and Y are lof equivalent if $\text{lof}(X) = \text{lof}(Y)$
- Uses history: feature k at sample i is $(z_{1,k}, \ldots, z_{(i-1),k})$
- K_h is the number of features with history h

New marginal:

$$P([Z]) = \sum_{Z \in [Z]} P(Z)$$

$$= \frac{K!}{\prod_{h=0}^{2^{N-1}} K_h!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$
Marginal on Z

$K \to \infty$

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha K \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

$$z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right)$$
Marginal on Z

$K \to \infty$

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

For $i = 1$, the chance of each feature k is independent

$$p(z_{1,k} = 1 | \alpha) = \int \text{Ber} (\pi_k) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}$$
Marginal on Z

$K \to \infty$

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$z_{i,k} | \pi_k \sim \text{Ber} \left(\pi_k \right)$$

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^{N-1}} K_h!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K})\Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

- For $i = 1$, the chance of each feature k is independent
 $$p(z_{1,k} = 1 | \alpha) = \int \text{Ber} \left(\pi_k \right) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}$$

- Let $K_1 = \sum_{k=1}^{K} z_{1,k}$ then $p(K_1 | \alpha) = \text{Binomial} \left(\frac{\alpha}{K}, K \right)$
Marginal on Z

$K \rightarrow \infty$

$$\pi_k|\alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$z_{i,k}|\pi_k \sim \text{Ber} \left(\pi_k \right)$$

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1) \frac{\Gamma(N + 1 + \frac{\alpha}{K})}{\Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1) \Gamma(N + 1 + \frac{\alpha}{K})}$$

- For $i = 1$, the chance of each feature k is independent
 $$p(z_{1,k} = 1|\alpha) = \int \text{Ber} \left(\pi_k \right) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}$$

- Let $K_1 = \sum_{k=1}^{K} z_{1,k}$ then $p(K_1|\alpha) = \text{Binomial} \left(\frac{\alpha}{K}, K \right)$

- $\lim_{K \rightarrow \infty} p(K_1|\alpha) = \text{Poisson} \left(\alpha \right)$
Marginal on Z

$K \to \infty$

$$\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)$$

$$P([Z]) = \frac{K!}{\prod_{h=0}^{2^{N-1}-1} K_h!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

- For $i = 1$, the chance of each feature k is independent
 $$p(z_{1,k} = 1 | \alpha) = \int \text{Ber} (\pi_k) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}$$
- Let $K_1 = \sum_{k=1}^{K} z_{1,k}$ then
 $$p(K_1 | \alpha) = \text{Binomial} \left(\frac{\alpha}{K}, K \right)$$
- $$\lim_{K \to \infty} p(K_1 | \alpha) = \text{Poisson} \left(\frac{\alpha}{K} \right)$$

Subsequent, i

- Let $n_{<i,k} = \sum_{j=1}^{i-1} z_{j,k}$
Marginal on Z

$K \to \infty$

$$
\pi_k|\alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)
$$

$$
P([Z]) = \frac{K!}{\prod_{h=0}^{2^{N-1}} K_h!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(n_k + \frac{\alpha}{K}) \Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
$$

- For $i = 1$, the chance of each feature k is independent
 $$p(z_{1,k} = 1|\alpha) = \int \text{Ber} (\pi_k) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}$$

- Let $K_1 = \sum_{k=1}^{K} z_{1,k}$ then $p(K_1|\alpha) = \text{Binomial} \left(\frac{\alpha}{K}, K \right)$

- $\lim_{K \to \infty} p(K_1|\alpha) = \text{Poisson} (\alpha)$

Subsequent, i

- Let $n_{<i,k} = \sum_{j=1}^{i-1} z_{j,k}$

- for a previously used k, $p(z_{i,k} = 1) = \frac{\frac{\alpha}{K} + n_{<i,k}}{\frac{\alpha}{K} + 1 - i - 1} \to \frac{n_{<i,k}}{i}$
Marginal on Z

$K \to \infty$

$$
\pi_k | \alpha \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)
$$

$$
P([Z]) = \frac{K!}{\prod_{h=0}^{2N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha \Gamma(n_k + \frac{\alpha}{K})\Gamma(N - n_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
$$

- For $i = 1$, the chance of each feature k is independent
 $$
p(z_{1,k} = 1 | \alpha) = \int \text{Ber} (\pi_k) \text{Beta} \left(\frac{\alpha}{K}, 1 \right) = \frac{\alpha}{K}
$$

- Let $K_1 = \sum_{k=1}^{K} z_{1,k}$ then $p(K_1 | \alpha) = \text{Binomial} \left(\frac{\alpha}{K}, K \right)$

- $\lim_{K \to \infty} p(K_1 | \alpha) = \text{Poisson} (\alpha)$

Subsequent, i

- Let $n_{<i,k} = \sum_{j=1}^{i-1} z_{j,k}$

- for a previously used k, $p(z_{i,k} = 1) = \frac{\alpha}{K} + n_{<i,k} \to \frac{n_{<i,k}}{i}$

- Also, Poisson $\left(\frac{\alpha}{i} \right)$ new features
Indian Buffet Process
sampling scheme for marginal of \(z_{i,k} | \alpha \)

First Customer: Sample Poisson \(\left(\frac{\alpha}{i} \right) \) dishes
Indian Buffet Process
sampling scheme for marginal of $z_{i,k|\alpha}$

First Customer: Sample Poisson $\left(\frac{\alpha}{i}\right)$ dishes
Each subsequent customer, i:

 ▶ Sample previously samples dishes by popularity $p(z_{i,k} = \frac{n_{<i,k}}{i})$
Indian Buffet Process
sampling scheme for marginal of $z_{i,k} | \alpha$

First Customer: Sample Poisson $\left(\frac{\alpha}{i} \right)$ dishes
Each subsequent customer, i:
- Sample previously samples dishes by popularity $p(z_{i,k} = \frac{n_{<i,k}}{i})$
- Sample Poisson $\left(\frac{\alpha}{i} \right)$ new dishes
Indian Buffet Process
sampling scheme for marginal of $z_{i,k} | \alpha$

First Customer: Sample Poisson (α / i) dishes
Each subsequent customer, i:

▶ Sample previously sampled dishes by popularity $p(z_{i,k} = n_{<i,k} / i)$
▶ Sample Poisson (α / i) new dishes

Properties:

▶ Effective dimension, $K_+ \sim \text{Poisson} \left(\alpha \sum_{i=1}^{N} \frac{1}{i} \right)$
▶ Number of dishes sampled by each customer is Poisson (α) by exchangeability
IBP Sampling

$\alpha = 5$
IBP Sampling
\(\alpha = 5 \)
IBP Sampling

$\alpha = 5$
IBP Sampling

\(\alpha = 5 \)
IBP Sampling

$\alpha = 5$
IBP Sampling

$\alpha = 5$

![Graph showing IBP Sampling with $\alpha = 5$.]
IBP Sampling

\(\alpha = 5 \)
IBP Sampling

$\alpha = 5$
IBP Sampling

\(\alpha = 5 \)
IBP Sampling

$\alpha = 5$
IBP Sampling
\(\alpha = 5 \)
IBP Sampling

$\alpha = 5$

Graphical Representation

- A scatter plot with a diagonal line indicating a relationship between two variables.
- A bar chart showing frequency distribution across the x-axis.
- A histogram with bars indicating the distribution of data points.
IBP Sampling

$\alpha = 5$
Gibbs Sampler

To sample, we need: $P(z_{i,k} = 1|Z_{-_i,k})$

Finite: $P(z_{i,k} = 1|Z_{-_i,k}) = \frac{n_{-i,k} + \alpha}{N + \frac{\alpha}{K}}$

Infinite: (by limit or IBP) $P(z_{i,k} = 1|Z_{-_i,k}) = \frac{n_{-i,k}}{N}$ new features:

Poisson $\left(\frac{\alpha}{N}\right)$

Algorithm for $Z \sim P(Z)$:

- start with arbitrary binary matrix
- iterate through rows:
 - if $m_{-i,k} > 0$ set $z_{i,k} = 1$ by above
 - else, delete column k
 - add Poisson $\left(\frac{\alpha}{N}\right)$ new features

This converges to a matrix drawn from $P(Z)$
Sampling the Posterior

The real target is $P(Z|X)$
Full conditional: $P(z_{i,k} = 1|Z_{-i,k}, X) \propto P(X|Z)P(z_{i,k} = 1|Z_{-i,k})$
Algorithm:

- start with arbitrary binary matrix
- iterate through rows:
 - if $m_{-i,k} > 0$ set $z_{i,k} = 1$ incorporating the likelihood
 - else, delete column k
 - add new columns with prior Poisson $\left(\frac{\alpha}{N} \right)$ and $P(X|Z)$ likeilihood
Example Application

4 sample images from 100 (b) posterior mean of the weights of the four most frequent features, with signs (c) reconstructions of images in (a) from model with codes
Summary

- Latent feature allocation allows each sample to belong to multiple groups
- Beta prior on bernouli draws, to construct a binary matrix
- Indian Buffet Process is a generative process for the matrix marginal
- IBP yields a Gibbs Sampler
- (note) There is a stick breaking scheme... it yields variational inference
Bayesian nonparametrics allow distributions without *fixed* parameters

Food Metaphors explain the marginals of the categorical (CRP) or Bernouli (IBP) distributions

Food Metaphors yield Gibbs Samplers

Stick breaking metaphors yield variational inference
Beta Distribution

\[\text{Beta}(\rho | \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \rho^{\alpha_1-1}(1 - \rho)^{\alpha_2-1} \]
Poisson Distribution

\[\text{Poisson} \left(k \left| \lambda \right. \right) = \frac{\lambda^k}{k!} \exp(-\lambda) \]
Binomial

\[p\left(\sum_{k=1}^{K} z_{1,k} = k\right) = \binom{K}{k} \frac{\alpha^k}{K} (1 - \frac{\alpha}{K})^{K-k} \]